3.941 \(\int (a+b \cos (c+d x)) (A+B \cos (c+d x)+C \cos ^2(c+d x)) \sec (c+d x) \, dx\)

Optimal. Leaf size=69 \[ \frac {1}{2} x (2 a B+2 A b+b C)+\frac {a A \tanh ^{-1}(\sin (c+d x))}{d}+\frac {(a C+b B) \sin (c+d x)}{d}+\frac {b C \sin (c+d x) \cos (c+d x)}{2 d} \]

[Out]

1/2*(2*A*b+2*B*a+C*b)*x+a*A*arctanh(sin(d*x+c))/d+(B*b+C*a)*sin(d*x+c)/d+1/2*b*C*cos(d*x+c)*sin(d*x+c)/d

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 69, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.108, Rules used = {3033, 3023, 2735, 3770} \[ \frac {1}{2} x (2 a B+2 A b+b C)+\frac {a A \tanh ^{-1}(\sin (c+d x))}{d}+\frac {(a C+b B) \sin (c+d x)}{d}+\frac {b C \sin (c+d x) \cos (c+d x)}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x],x]

[Out]

((2*A*b + 2*a*B + b*C)*x)/2 + (a*A*ArcTanh[Sin[c + d*x]])/d + ((b*B + a*C)*Sin[c + d*x])/d + (b*C*Cos[c + d*x]
*Sin[c + d*x])/(2*d)

Rule 2735

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*x)/d
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 3033

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])*((A_.) + (B_.)*sin[(e
_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*d*Cos[e + f*x]*Sin[e + f*x]*(a + b
*Sin[e + f*x])^(m + 1))/(b*f*(m + 3)), x] + Dist[1/(b*(m + 3)), Int[(a + b*Sin[e + f*x])^m*Simp[a*C*d + A*b*c*
(m + 3) + b*(B*c*(m + 3) + d*(C*(m + 2) + A*(m + 3)))*Sin[e + f*x] - (2*a*C*d - b*(c*C + B*d)*(m + 3))*Sin[e +
 f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] &&
!LtQ[m, -1]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int (a+b \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx &=\frac {b C \cos (c+d x) \sin (c+d x)}{2 d}+\frac {1}{2} \int \left (2 a A+(2 A b+2 a B+b C) \cos (c+d x)+2 (b B+a C) \cos ^2(c+d x)\right ) \sec (c+d x) \, dx\\ &=\frac {(b B+a C) \sin (c+d x)}{d}+\frac {b C \cos (c+d x) \sin (c+d x)}{2 d}+\frac {1}{2} \int (2 a A+(2 A b+2 a B+b C) \cos (c+d x)) \sec (c+d x) \, dx\\ &=\frac {1}{2} (2 A b+2 a B+b C) x+\frac {(b B+a C) \sin (c+d x)}{d}+\frac {b C \cos (c+d x) \sin (c+d x)}{2 d}+(a A) \int \sec (c+d x) \, dx\\ &=\frac {1}{2} (2 A b+2 a B+b C) x+\frac {a A \tanh ^{-1}(\sin (c+d x))}{d}+\frac {(b B+a C) \sin (c+d x)}{d}+\frac {b C \cos (c+d x) \sin (c+d x)}{2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.13, size = 68, normalized size = 0.99 \[ \frac {4 a A \tanh ^{-1}(\sin (c+d x))+4 (a C+b B) \sin (c+d x)+4 a B d x+4 A b d x+b C \sin (2 (c+d x))+2 b c C+2 b C d x}{4 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x],x]

[Out]

(2*b*c*C + 4*A*b*d*x + 4*a*B*d*x + 2*b*C*d*x + 4*a*A*ArcTanh[Sin[c + d*x]] + 4*(b*B + a*C)*Sin[c + d*x] + b*C*
Sin[2*(c + d*x)])/(4*d)

________________________________________________________________________________________

fricas [A]  time = 0.44, size = 73, normalized size = 1.06 \[ \frac {{\left (2 \, B a + {\left (2 \, A + C\right )} b\right )} d x + A a \log \left (\sin \left (d x + c\right ) + 1\right ) - A a \log \left (-\sin \left (d x + c\right ) + 1\right ) + {\left (C b \cos \left (d x + c\right ) + 2 \, C a + 2 \, B b\right )} \sin \left (d x + c\right )}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c),x, algorithm="fricas")

[Out]

1/2*((2*B*a + (2*A + C)*b)*d*x + A*a*log(sin(d*x + c) + 1) - A*a*log(-sin(d*x + c) + 1) + (C*b*cos(d*x + c) +
2*C*a + 2*B*b)*sin(d*x + c))/d

________________________________________________________________________________________

giac [B]  time = 0.24, size = 159, normalized size = 2.30 \[ \frac {2 \, A a \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 2 \, A a \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) + {\left (2 \, B a + 2 \, A b + C b\right )} {\left (d x + c\right )} + \frac {2 \, {\left (2 \, C a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 2 \, B b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - C b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 2 \, C a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2 \, B b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + C b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{2}}}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c),x, algorithm="giac")

[Out]

1/2*(2*A*a*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 2*A*a*log(abs(tan(1/2*d*x + 1/2*c) - 1)) + (2*B*a + 2*A*b + C*
b)*(d*x + c) + 2*(2*C*a*tan(1/2*d*x + 1/2*c)^3 + 2*B*b*tan(1/2*d*x + 1/2*c)^3 - C*b*tan(1/2*d*x + 1/2*c)^3 + 2
*C*a*tan(1/2*d*x + 1/2*c) + 2*B*b*tan(1/2*d*x + 1/2*c) + C*b*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 + 1
)^2)/d

________________________________________________________________________________________

maple [A]  time = 0.16, size = 100, normalized size = 1.45 \[ \frac {a A \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}+a B x +\frac {B a c}{d}+\frac {a C \sin \left (d x +c \right )}{d}+A x b +\frac {A b c}{d}+\frac {b B \sin \left (d x +c \right )}{d}+\frac {b C \cos \left (d x +c \right ) \sin \left (d x +c \right )}{2 d}+\frac {b C x}{2}+\frac {C b c}{2 d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c),x)

[Out]

1/d*a*A*ln(sec(d*x+c)+tan(d*x+c))+a*B*x+1/d*B*a*c+a*C*sin(d*x+c)/d+A*x*b+1/d*A*b*c+b*B*sin(d*x+c)/d+1/2*b*C*co
s(d*x+c)*sin(d*x+c)/d+1/2*b*C*x+1/2/d*C*b*c

________________________________________________________________________________________

maxima [A]  time = 0.33, size = 82, normalized size = 1.19 \[ \frac {4 \, {\left (d x + c\right )} B a + 4 \, {\left (d x + c\right )} A b + {\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} C b + 4 \, A a \log \left (\sec \left (d x + c\right ) + \tan \left (d x + c\right )\right ) + 4 \, C a \sin \left (d x + c\right ) + 4 \, B b \sin \left (d x + c\right )}{4 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c),x, algorithm="maxima")

[Out]

1/4*(4*(d*x + c)*B*a + 4*(d*x + c)*A*b + (2*d*x + 2*c + sin(2*d*x + 2*c))*C*b + 4*A*a*log(sec(d*x + c) + tan(d
*x + c)) + 4*C*a*sin(d*x + c) + 4*B*b*sin(d*x + c))/d

________________________________________________________________________________________

mupad [B]  time = 2.07, size = 156, normalized size = 2.26 \[ \frac {B\,b\,\sin \left (c+d\,x\right )}{d}+\frac {C\,a\,\sin \left (c+d\,x\right )}{d}+\frac {2\,A\,a\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {2\,A\,b\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {2\,B\,a\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {C\,b\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {C\,b\,\sin \left (2\,c+2\,d\,x\right )}{4\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*cos(c + d*x))*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c + d*x),x)

[Out]

(B*b*sin(c + d*x))/d + (C*a*sin(c + d*x))/d + (2*A*a*atanh(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/d + (2*A*b*
atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/d + (2*B*a*atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/d + (C*b*
atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/d + (C*b*sin(2*c + 2*d*x))/(4*d)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (a + b \cos {\left (c + d x \right )}\right ) \left (A + B \cos {\left (c + d x \right )} + C \cos ^{2}{\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c),x)

[Out]

Integral((a + b*cos(c + d*x))*(A + B*cos(c + d*x) + C*cos(c + d*x)**2)*sec(c + d*x), x)

________________________________________________________________________________________